A Cantor-Lebesgue Theorem in Two Dimensions
نویسندگان
چکیده
منابع مشابه
A Cantor-lebesgue Theorem with Variable "coefficients"
If {qn} is a lacunary sequence of integers, and if for each n, cn(x) and c-n(x) are trigonometric polynomials of degree n, then {Cn(X)} must tend to zero for almost every x whenever {cn(x)ei?nX + c-n(-x)e-i?'nX} does. We conjecture that a similar result ought to hold even when the sequence {f On} has much slower growth. However, there is a sequence of integers {nj } and trigonometric polynomial...
متن کاملOne and Two Dimensional Cantor-lebesgue Type Theorems
Let φ(n) be any function which grows more slowly than exponentially in n, i.e., limsup n→∞ φ(n)1/n ≤ 1. There is a double trigonometric series whose coefficients grow like φ(n), and which is everywhere convergent in the square, restricted rectangular, and one-way iterative senses. Given any preassigned rate, there is a one dimensional trigonometric series whose coefficients grow at that rate, b...
متن کاملA Generalized Cantor Theorem
A well known theorem of Cantor asserts that the cardinal of the power-set of a given set always exceeds the cardinal of the original set. An analogous result for sets having additional structure is the well known theorem that the set of initial segments of a well ordered set always has order type greater than the original set. These two theorems suggest that there should be a similar result for...
متن کاملThe Lebesgue Measure of the Algebraic Difference of Two Random Cantor Sets
In this paper we consider a family of random Cantor sets on the line. We give some sufficient conditions when the Lebesgue measure of the arithmetic difference is positive. Combining this with the main result of a recent joint paper of the second author with M. Dekking we construct random Cantor sets F1, F2 such that the arithmetic difference set F2 − F1 does not contain any intervals but Leb(F...
متن کاملThe Lebesgue Monotone Convergence Theorem
For simplicity, we adopt the following rules: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, E is an element of S, F , G are sequences of partial functions from X into R, I is a sequence of extended reals, f , g are partial functions from X to R, s1, s2, s3 are sequences of extended reals, p is an extended real number, n, m are natural numbers, x is an element of X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1971
ISSN: 0002-9939
DOI: 10.2307/2037731